TABLE OF CONTENTS

Introduction

Spider-80Xi Front-end Specifications (S80Xi – P08)

- Input Channel Specifications
- Tachometer Input Specifications
- Output Channel Specifications

Spider-80SGi Front-end Specifications (S80SGi – P08)

- Measurement Channel Specifications
- Strain Gage Functions:
- Output Channel Specifications

Spider-80Ti Front-end Specifications (S80Ti – P08)

- Temperature Input Channel

Spider-80Xi System Specifications (S80Xi-A35-8N/S80Xi-A35-4N)

- Input Channels
- Isolated Digital Input and Output
 - Digital Inputs
 - Digital Outputs
- Mass Storage
- Time Synchronization

Environmental and General Specifications

8 Slot Chassis (S80Xi-A35-8N)

4 slot chassis (S80Xi-A35-4N)

Hardware Part Numbers

PC Requirements for EDM Software
INTRODUCTION

The Spider-80Xi system is a compact, ultra-portable chassis that can host a combination of Spider-80Xi, Spider-80SGi and Spider-80Ti front-ends, to facilitate measurements of Acceleration (Spider-80Xi), Strain along with a host of measurements quantities (Spider-80SGi) and Temperature (Spider-80Ti). The size efficient design of Spider-80Xi chassis eliminated individual enclosures for each modular card to minimize overall dimensions. Light weighted, it is ideal for the applications that the portability and size are critical to the usage while exchangeability of cards are not required.

Spider-80Xi system comes with two different chassis, one that can host up to 64 input channels and one up to 32 input channels. With each front-end card consisting of 8 channels, a combination of different front-end cards among Spider-80Xi, SGI or Ti could be added to the system to form a synchronized high channel count system with several types of inputs.

Multiple chassis can be chained to form a system with up to 512 channels, all sampled simultaneously. Multiple Spider front-ends are accurately synchronized through the IEEE 1588v2 protocol, making sure all measurement channels are on the same time base. Accurate time synchronization results in excellent phase match in the frequency domain between all channels, either on the same Spider front-end or across different front-ends. Channel phase match, even between separate Spider front-ends, is within 1.0 degree at 20 kHz which is suitable for high quality structural and acoustics applications requiring cross channel measurement.

The Spider-80Xi system with the 64 channel chassis is powered by AC power, 100 to 240 VAC. The Spider-80Xi system with the 32 channel chassis is powered by DC power, 12 – 30 V DC. The latter can be easily used together with an external battery pack. With Spider-Battery, a special model of battery CI developed, the 32 channel Spider-80Xi can run up to 4 hours without interruption.

Input channels of Spider-80Xi front-ends are equipped with IEPE power source to power IEPE sensors in addition to standard voltage input which makes it ideal for shock, vibration, acoustic, or general purpose voltage measurements. Spider-80SGi front-ends are designed for measuring Strain using precision excitation and other general purpose measurement quantities using customizable power supply. Recently introduced Spider-80Ti adds temperature measurement capability to the Spider-80Xi system. The Spider product line performance is the best in class with the highest dynamic range of any similar product. With patented technology, each measurement channel can detect signals as small as 6 µV and as large as ±20 V. Proprietary hardware technology delivers more than 160 dBFS dynamic range. The extremely high dynamic range eliminates the need for multiple front-end gain settings.

Spider-80Xi system can operate in Black Box mode which allows it to acquire data without a PC. In this mode, a PC is used only to configure the system before the test and then to download the data after the test is complete. During the test, the front-end can be operated according to a preset schedule or from a variety of external devices, such as a Wi-Fi enabled PDA or iPad.

Input channels of Spider-80Xi front-ends are equipped with IEPE power source to power IEPE sensors in addition to standard voltage input which makes it ideal for shock, vibration, acoustic, or general purpose voltage measurements. Spider-80SGi front-ends are designed for measuring Strain using precision excitation and other general purpose measurement quantities using customizable power supply. Recently introduced Spider-80Ti adds temperature measurement capability to the Spider-80Xi system. The Spider product line performance is the best in class with the highest dynamic range of any similar product. With patented technology, each measurement channel can detect signals as small as 6 µV and as large as ±20 V. Proprietary hardware technology delivers more than 160 dBFS dynamic range. The extremely high dynamic range eliminates the need for multiple front-end gain settings.

Spider-80Xi system is equipped with powerful and flexible data acquisition functions. Continuous time data recording and spectral analysis can be initiated by many events including user operation, pre-set run schedule, alarm limit trigger, input trigger or digital input trigger. A high-performance removable 2.5-inch hard disk is used as a storage media inside Spider-80Xi. The default capacity of hard disk is 250GB. When recorded, data will be written in the NTFS file format. Data is extracted from the hard disk using Crystal Instruments PC software to transfer data to the PC, or the hard disk can be physically removed and connected to another PC.

SPIDER-80XI FRONT-END SPECIFICATIONS (S80XI – P08)

Input Channel Specifications
- Number of Input Channels per Chassis: 16, 24, 32, 48, 56 or 64 when ordered with S80Xi-A35-8N; This is only factory configurable.
- Connector Type: BNC
- TEDS: IEEE 1451.4 compliant
- Coupling: AC, DC, IEPE (ICP®)
- IEPE Power: 4.2 mA at 21 V
- Input Type: Differential or Single-Ended
- Input Range: ±20 Vpk
- Input Impedance: 1 MO for differential; 500 kΩ for single-end
- Input Protection Voltage: ±220V
- AC Coupling: analog high-pass filter at 0.375 Hz @ (-3 dB) and 0.7 Hz @ (-0.1 dB)
- A/D Resolutions: 2 x 24-bit (patented dual A/D technology per input channel)
- Anti-Aliasing Filter: analog anti-aliasing filters plus digital decimation technique
- Digital Filter: high-pass filters (user programmable)
- Dynamic Range: 160 dBFS
- Sampling Rate: 0.48 Hz to 102.4 kHz, with 54 stages
- Maximum Bandwidth: 46.08 kHz
- THD: -95 dB (SV sine, DC to 1kHz)
- Amplitude Channel Match (1 kHz, 1V input): 0.02 dB
- Channel Phase Match: < ±0.1 degree up to 20 kHz
- Crosstalk: less than -100 dB
- Frequency Accuracy: ±250 ppm (typically ±0.25Hz margin at 1 kHz)
- Common Mode Range: ±20 Vpk
- Common Mode Rejection: better than 70 dB (typical)
- Amplitude Accuracy (1 kHz, 1V input): ± 0.1%
- LED Indicator: displays the status of each channel in red or green

Tachometer Input Specifications
- Number of Tachometers: 2
- Connector Type: BNC
- Configuration: Software configures the port as either output or tacho input
- Input Voltage Range of Rotating Pulses: zero to +/-10Vpk
- Maximum RPM: 300,000

Tacho channel 1 can be used for both pulse counting and order
tracking measurement. Tacho channel 2 is with 50MHz ultra-high counter resolution, is only used for pulse counting.

Output Channel Specifications
- **Channels:** 2 channels
- **Connector Type:** BNC
- **D/A Resolution:** 24-bits
- **Max Output Frequency:** 46 kHz
- **Dynamic Range:** 100 dB
- **Output Impedance:** 50 Ω
- **Maximum Output Current:** 250 mA
- **Amplitude Accuracy (1 kHz, 1Vrms):** ±0.2%
- **Anti-Imaging Filtering:** 160 dB/oct digital plus analog filters
- **Source Waveforms:** sine, triangle, square, white noise, DC, chirp, swept sine, arbitrary waveform
- **Arbitrary Waveform Size Limit:** 16,000 points typical. Special configuration allows up to 128,000 points.
- **Output Range:** ± 10 Volts

SPIDER-80SGI FRONT-END SPECIFICATIONS (S80SGI – P08)
Measurement Channel Specifications
- **Input Channels:** 8 channels per front-end
- **Connector Type:** 7-pin LEMO
- **Coupling:** DC Differential, AC Differential
- **Excitation Voltage / Power Supply:** 2.5V, 5V, 10V
- **AC Coupling Cutoff Freq. @ -3dB:** 0.375 Hz
- **Input Impedance:** 1M Ω
- **A/D Resolution:** 24 bit
- **Input Protection Voltage:** +/-40Vpk
- **Input Range:** ±10mV, ±100mV, ±1V, ±10V
- **Sampling Rate per Channel:** 0.48 Hz to 102.4 kHz, with 54 stages
- **Maximum Useful Bandwidth:** 46% of sampling rate
- **Crosstalk:** less than -130 dB
- **Frequency Accuracy:** better than 1/100,000
- **Amplitude Accuracy:** 0.1% typical
- **Amplitude Accuracy (Extended Cable Length):** Less than 1.5% (up to 10 kHz), cable length up to 1000 ft (18AWG)
- **Noise Floor:** 0.5 μV/V (10mV Range)
- **DC Drift:** 1.5 μV/V in 48 Hours
- **Anti-Aliasing Filter:** analog anti-aliasing filters
- **Max Sampling Rate:** 102.4 kHz
- **Digital Filter:** digital high-pass and low-pass filters
- **Total THD + Noise:** -90dBfs (DC to 1 kHz)
- **Amplitude Channel Match:** 0.1dB
- **Phase Channel Match:** better than 0.3 degrees up to 20 kHz
- **Common Mode Range:** 100% input range
- **Shunt Calibration:** Internal 100K Ω (0.1%, 25 ppm/c)
- **Excitation Sense:** local sensing and remote sensing

Strain Gage Functions:
- **120Ω, 350Ω Quarter Bridges** (Type I,II, 3 – Wire Quarter Bridge)
- **Half bridge** (Type I,II)
- **Full bridge** (Type I,II)
- **Bridge Completion:** 120 Ω / 350 Ω: 0.1%, 25 ppm/c
- **Back Half Resistor:** 120 Ω/350 Ω: 0.1% 25 ppm/c
- **Excitation Voltage for Strain Gauge:** ±2.5V, ±5V
- **Current:** 30mA max/channel
- **Zero Suppression/Auto Balancing/Offset Nulling**
- **Power Supply (excitation voltage for other kind of sensors):** 2.5V, 5V, 10 V

Output Channel Specifications
- **Channels:** 1 output channel per front-end
- **Configuration:** Output for voltage calibration
- **Connector Type:** 2-pin LEMO
- **D/A Resolution:** 24 bit
- **Max Output Frequency:** 46 kHz
- **Dynamic Range:** 100 dB
- **Output Impedance:** 50 Ω
- **Maximum Output Current:** 25 mA
- **Sine Amplitude Accuracy:** ±1% (0.34 dB) for 0.1 to 5 Vpk, at 1 kHz
- **Anti-Imaging Filtering:** 160 dB/oct digital plus analog filters
- **Digital Filter:** high-pass and low-pass digital filters
- **Source Waveforms:** sine, triangle, square, white noise, DC, chirp, swept sine, arbitrary waveform
- **Arbitrary Waveform Size Limit:** 16,000 points typical. Special configuration allows up to 128,000 points.
- **Output Range:** ± 10 Volts

SPIDER-80TI FRONT-END SPECIFICATIONS (S80TI – P08)
Temperature Input Channel
- **Number of Input Channels:** 16 channels per front-end
- **Connector Type:** Three pins Screwed Terminal
- **Input Type:** Three wire RTD/ K type thermocouple
- **Input Range:** RTD: -200°C ---+850°C; K type thermocouple: -200°C -- +1250°C
- **Sensor Accuracy:** RTD: +/-0.2°C; Thermocouple: +/-0.5 C
- **Maximum Sampling Rate:** 2 kHz

SPIDER-80XI SYSTEM SPECIFICATIONS (S80XI-A35-8N/ S80XI-A35-4N)
Input Channels
- **Number of Input Channels per Chassis:** 16, 24, 32, 48,56 or 64 when ordered with S80XI-A35-8N, the 8 slot chassis; 16, 24, 32 when ordered with S80XI-A35-4N, the 4 slot chassis. This is
Isolated Digital Input and Output
Total 4 bits digital channels that can be configurable by the software
to either input or output type.
- Connector: 9pin female D-SUB
- External Circuit Power Supply: 12 VDC (±10%)
- Internal Power: 12 VDC 400 mA
- Maximum Allowable Distance of Signal Extension: 50 meters

Digital Inputs
- Input Format: opto-isolated input (compatible with current-sink output)
- Number of Channels: 4
- Input Resistance: 6.1 kΩ
- Input On Current: 2.0 mA or more
- Input Off Current: 0.16 mA or less
- Interrupt: 8 input signals are arranged into a single interrupt output signal. An interrupt is generated either at the rising edge (HIGH-to-LOW transition) or falling edge (LOW-to-HIGH transition).

Digital Outputs
- Output Format: opto-isolated input (current sink output)
- Number of Channels: 4
- Output Rating: output voltage 12 VDC max, output current 100 mA per channel max
- Residual Voltage with Output On: 1.0 V or less (Output current < 100 mA)
- Pulse Width: 47 ms
- Rise Time: 250 µs
- Fall Time: 50 µs

Mass Storage
A high-performance removable Serial ATA (SATA) 2.5-inch hard disk is used as storage media. When recorded, data will be written in NTFS file format. Data is extracted from the Spider-NAS using Crystal Instruments software to transfer data to the PC. Alternatively, the SATA hard disk can be physically removed and connected to extract data to the PC.

When it is shipped, a solid state hard-drive with a capacity of 250GB is installed internally. The solid state drive performs very well in the high shock and vibration environment. A special error-checking algorithm developed by Crystal Instruments detects and avoids any errors that may occur in the data transfer and storage.

Time Synchronization
Through the Ethernet connection, multiple Spider-80Xi front-ends can be synchronized through the IEEE 1588v2 protocol. The synchronization accuracy is better than ±100 ns when Spider-HUB switch is used. The data acquired by all the measurement channels will be on the same time base. Phase match between channels across different Spider front-ends is within 1.0 degree at 20 kHz.

Environmental and General Specifications
- Ethernet: 100Base-T Ethernet. RJ 45 connector
- Digital Input and Output: 2 digital inputs and 2 digital outputs
- Hard Buttons: Power, Fan On/Off, Start measurement, Stop measurement
- LCD Display: 128 x 64 dot; Monochrome; Display size: 61 x 31.3mm. Displays the IP address, connection status and input status of the system
- Cooling Fan: Manually controlled
- Grounding: Connect to common ground of power amplifier to reduce ground-loop interference. Connector Type: 0.166 inch (4.23 mm) jack connector for standard 0.166 inch banana plug
- Hardware Abort: Hardware Abort 2 pin port is provided which can be connected to a switch to force turn off the output of the front-end.
- Connector Type: 2 pin LEMO
- Operational Temperature: -10 °C to +55 °C
- Storage Temperature: -20 °C to +70 °C
- Shock: 50 g’s, 315 in/sec, tested at 6 sides, non-operational test
- Vibration: 5 – 500 Hz, 0.3 g rms, tested at 3 sides, operational test
- Vibration: 5 – 500 Hz, 2.42 g rms, tested at 3 sides, non-operational test

8 SLOT CHASSIS (S80XI-A35-8N)
- Enclosure: rugged sealed metal box, electrical safety compliant, and internal EMI shielding
- Power Supply: 100 – 240 V AC (47 – 440 Hz),
- Power Consumption: less than 90W when 64 channels are configured
- Size: 278.4 X 257 X 304 mm (W x H x L)
- Total Weight: 12.06 kg when 64 channels configured
- The 8 slot chassis supports:
 - 8 Spider-80Xi/SGi/Ti front-ends
 - Spider-NASi for mass storage
 - Spider-HUBi for communication and time sync

4 SLOT CHASSIS (S80XI-A35-4N)
- Enclosure: rugged sealed metal box, electrical safety compliant, and internal EMI shielding
- Power Supply: 12 – 30 V DC
- Power Consumption: less than 50W when 32 channels are configured
- Size: 193.8 X 257 X 304 mm (W x H x L)
- Total Weight: 8.2 kg when 32 channels configured
- Battery Hours: 4 hours with Spider-Battery provided
The 4 slot chassis supports:
- 4 Spider-80Xi/SGi/Ti front-ends
- Spider-NASi for mass storage
- Spider-HUBi for communication and time sync

PC Requirements for EDM Software
- Operating System Support: Windows 7 or higher
- Operating System Type: 32-bit or 64-bit
- Minimum Processor Speed: 1.5GHz Dual-Core x86
- Minimum RAM: 4 GB
- Minimum Free Space: 10 GB

HARDWARE PART NUMBERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S80Xi-P08</td>
<td>Spider-80Xi front-end card: 8 Inputs</td>
</tr>
<tr>
<td>S80SGi-P08</td>
<td>Spider-80SGi front-end card: 8 Inputs</td>
</tr>
<tr>
<td>S80Ti-P08</td>
<td>Spider-80Ti front-end card: 16 Inputs</td>
</tr>
<tr>
<td>S80Xi-A35-4N</td>
<td>4-slot chassis with HUB and NAS</td>
</tr>
<tr>
<td>S80Xi-A35-8N</td>
<td>8-slot chassis with HUB and NAS</td>
</tr>
</tbody>
</table>

© 2018 Crystal Instruments Corporation. All Rights Reserved. 08/2018 | www.crystalinstruments.com | info@go-ci.com

Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning any equipment, equipment feature, or service offered or to be offered by Crystal Instruments. Crystal Instruments reserves the right to make changes to this document at any time, without notice, and assumes no responsibility for its use. This informational document describes features that may not be currently available. Contact a Crystal Instruments sales representative for information on features and product availability.